Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.343
Filtrar
1.
Carbohydr Polym ; 335: 122110, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616084

RESUMO

A neutral heteropolysaccharide (PNANb) was isolated with alkali (0.1 M NaOH) from mycelia of Phellinus nigricans, and the structure, immunostimulating activity and some of the underlying molecular mechanisms of action of PNANb were explored in the current study. PNANb (14.95 kDa) predominantly consisted of Gal, Glc, and Man with minor Fuc. GC-MS and NMR analyses indicated that the backbone of PNANb was mainly composed of 6-α-Galp, 2,6-α-Galp with minor 3,6-ß-Glcp, which was substituted with complex side chains at C-2 of 2,6-α-Galp and C-3 of 3,6-ß-Glcp. Notably, PNANb (50 or 100 mg/kg) possessed immunoprotective effects in cyclophosphamide (Cy)-induced immunosuppressed C57BL/6 mice, which was supported by evidence including the enhancement of spleen and thymus indices, levels of serum immunoglobulins (IgG, IgM) and cytokines (IFN-γ, IL-2, IL-4, IL-10), and macrophage activity. However, the immunostimulation effects of PNANb were decreased when macrophages were depleted, underscoring the essential role of macrophages in the beneficial effects of PNANb in Cy-induced immunosuppressed mice. Further investigations in vitro indicated that PNANb activated macrophages through MAPK/NF-κB signaling pathways mediated by Toll-like receptor 4. Therefore, PNANb can serve as a prospective immunopotentiator in immunosuppression.


Assuntos
Adjuvantes Imunológicos , Álcalis , Phellinus , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia , Estudos Prospectivos , Ciclofosfamida/farmacologia , Macrófagos
2.
Commun Biol ; 7(1): 433, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594380

RESUMO

Lung tissue resident memory (TRM) cells are thought to play crucial roles in lung host defense. We have recently shown that immunization with the adjuvant LTA1 (derived from the A1 domain of E. coli heat labile toxin) admixed with OmpX from K. pneumoniae can elicit antigen specific lung Th17 TRM cells that provide serotype independent immunity to members of the Enterobacteriaceae family. However, the upstream requirements to generate these cells are unclear. Single-cell RNA-seq showed that vaccine-elicited Th17 TRM cells expressed high levels of IL-1R1, suggesting that IL-1 family members may be critical to generate these cells. Using a combination of genetic and antibody neutralization approaches, we show that Th17 TRM cells can be generated independent of caspase-1 but are compromised when IL-1α is neutralized. Moreover IL-1α could serve as a molecular adjuvant to generate lung Th17 TRM cells independent of LTA1. Taken together, these data suggest that IL-1α plays a major role in vaccine-mediated lung Th17 TRM generation.


Assuntos
Escherichia coli , Vacinas , Memória Imunológica , Imunização , Adjuvantes Imunológicos/farmacologia
3.
Immunity ; 57(4): 772-789, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599170

RESUMO

Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.


Assuntos
Adjuvantes de Vacinas , Vacinas , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Imunidade Inata , Vacinação
4.
Arch Microbiol ; 206(5): 207, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581477

RESUMO

Multidrug microbial resistance is risking an annual loss of more than 10 million people' lives by 2050. Solutions include the rational use of antibiotics and the use of drugs that reduce resistance or completely obliterate them. Here endophytes come to play due to their high-yield production and inherent nature to produce antimicrobial molecules. Around 40%, 45% and 17% of antibacterial agents were obtained from fungi, actinomycetes, and bacteria, respectively, whose secondary metabolites revealed effectiveness against resistant microbes such as MRSA, MRSE, and Shigella flexneri. Endophyte's role was not confined to bactericidal effect but extended to other mechanisms against MDR microbes, among which was the adjuvant role or the "magic bullets". Scarce focus was given to antibiotic adjuvants, and many laboratories today just screen for the antimicrobial activity without considering combinations with traditional antibiotics, which means real loss of promising resistance combating molecules. While some examples of synthetic adjuvants were introduced in the last decade, the number is still far from covering the disused antibiotics and restoring them back to clinical use. The data compiled in this article demonstrated the significance of quorum sensing as a foreseen mechanism for adjuvants from endophytes secondary metabolites, which call for urgent in-depth studies of their molecular mechanisms. This review, comprehensively and for the first time, sheds light on the significance of endophytes secondary metabolites in solving AMR problem as AB adjuvants.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Endófitos , Anti-Infecciosos/farmacologia , Adjuvantes Imunológicos/farmacologia , Bactérias
5.
PLoS One ; 19(4): e0298117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573916

RESUMO

Selection of adjuvant to be combined with the antigen is an extremely important point for formulating effective vaccines. The aim of this study was to evaluate reactogenicity, levels of IgM, IgG and subclasses (IgG1, IgG2b and IgG3), and protection elicited by vaccine formulations with association of chitosan coated alginate or Montanide ISA 61 with γ-irradiated Brucella ovis. The alginate/chitosan biopolymers as well as the Montanide ISA 61 emulsion elicited intense and long-lasting local response, especially when associated with the antigen. However, Montanide ISA 61 induced less intense reactogenicity when compared to alginate/chitosan. Furthermore, γ-irradiated B. ovis with Montanide ISA 61 induced higher levels of IgG2b an important marker of cellular immune response. In conclusion, Montanide ISA 61 resulted in milder reactogenicity when compared to the alginate/chitosan, while it induced a high IgG2b/IgG1 ratio compatible with a Th1 profile response.


Assuntos
Quitosana , Óleo Mineral , Vacinas , Animais , Camundongos , Ovinos , Adjuvantes de Vacinas , Cápsulas , Adjuvantes Imunológicos/farmacologia , Imunoglobulina G , Camundongos Endogâmicos BALB C
6.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578989

RESUMO

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Assuntos
Vacina BCG , Tuberculose , Humanos , Ácido Linoleico , Imunidade Treinada , Multiômica , Adjuvantes Imunológicos/farmacologia
7.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580687

RESUMO

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Assuntos
Cordyceps , Adulto , Humanos , Masculino , Feminino , Cordyceps/química , Desoxiadenosinas/farmacologia , Adenosina/metabolismo , Adjuvantes Imunológicos/farmacologia , Fígado , Imunidade
9.
J Med Chem ; 67(7): 5603-5616, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513080

RESUMO

Vaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response. We are developing a new synthetic monosaccharide-based TLR4 agonist, such as glucosamine-derived compounds FP18 and FP20, as a potential vaccine adjuvant. In this study, we present a new FP20 derivative, FP20Hmp, with a hydroxylated ester linked to the glucosamine core. We show that the modification introduced improves the activity of the adjuvant and its solubility. This study presents the synthesis of FP20Hmp, its in vitro characterization, and in vivo activity while coupled with the ovalbumin antigen or in formulation with an enterococcal antigen. We show that FP20Hmp enables increased production of antigen-specific antibodies that bind to the whole bacterium.


Assuntos
Adjuvantes de Vacinas , Enterococcus faecium , Receptor 4 Toll-Like , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Vacinas de Subunidades , Glucosamina
10.
Front Immunol ; 15: 1353865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426111

RESUMO

Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens. Thus, CFA can be considered as a confounding factor in multiple sclerosis-related studies performed on EAE. Here, we discuss the effects of CFA in EAE in detail and present EAE variants induced in experimental animals without the use of CFA. We put forward CFA-free EAE variants as valuable tools for studying multiple sclerosis pathogenesis and therapeutic approaches.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Adjuvante de Freund , Esclerose Múltipla/complicações , Adjuvantes Imunológicos/farmacologia , Antígenos de Bactérias
11.
Sci Adv ; 10(11): eadk2444, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478602

RESUMO

Cancer vaccines show huge potential for cancer prevention and treatment. However, their efficacy remains limited due to weak immunogenicity regarding inefficient stimulation of cytotoxic T lymphocyte (CTL) responses. Inspired by the unique characteristic and biological function of high-density lipoprotein (HDL), we here develop an HDL-mimicking nanovaccine with the commendable lymph-targeted capacity to potently elicit antitumor immunity using lipid nanoparticle that is co-loaded with specific cancer cytomembrane harboring a collection of tumor-associated antigens and an immune adjuvant. The nanoparticulate impact is explored on the efficiency of lymphatic targeting and dendritic cell uptake. The optimized nanovaccine promotes the co-delivery of antigens and adjuvants to lymph nodes and maintains antigen presentation of dendritic cells, resulting in long-term immune surveillance as the elevated frequency of CTLs within lymphoid organs and tumor tissue. Immunization of nanovaccine suppresses tumor formation and growth and augments the therapeutic efficacy of checkpoint inhibitors notably on the high-stemness melanoma in the mouse models.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Animais , Camundongos , 60547 , Linfócitos T Citotóxicos , Melanoma/patologia , Antígenos de Neoplasias , Adjuvantes Imunológicos/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL
12.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465928

RESUMO

Cationic nanostructures have emerged as an adjuvant and antigen delivery system that enhances dendritic cell maturation, ROS generation, and antigen uptake and then promotes antigen-specific immune responses. In recent years, retinoic acid (RA) has received increasing attention due to its effect in activating the mucosal immune response; however, in order to use RA as a mucosal adjuvant, it is necessary to solve the problem of its dissolution, loading, and delivery. Here, we describe a cationic nanoemulsion-encapsulated retinoic acid (CNE-RA) delivery system composed of the cationic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOTAP), retinoic acid, squalene as the oil phase, polysorbate 80 as surfactant, and sorbitan trioleate 85 as co-surfactant. Its physical and chemical properties were characterized using dynamic light scattering and a spectrophotometer. Immunization of mice with the mixture of antigen (ovalbumin, OVA) and CNE-RA significantly elevated the levels of anti-OVA secretory immunoglobulin A (sIgA) in vaginal lavage fluid and the small intestinal lavage fluid of mice compared with OVA alone. This protocol describes a detailed method for the preparation, characterization, and evaluation of the adjuvant effect of CNE-RA.


Assuntos
Adjuvantes Imunológicos , Imunização , Feminino , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Mucosa , Vacinação , Antígenos , Imunidade nas Mucosas , Tensoativos/farmacologia , Ovalbumina , Camundongos Endogâmicos BALB C
13.
Methods Mol Biol ; 2789: 209-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507006

RESUMO

Nanoparticles can be engineered for targeted antigen delivery to immune cells and for stimulating an immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.


Assuntos
Nanopartículas , Vacinas , Animais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Sistemas de Liberação de Medicamentos
14.
J Photochem Photobiol B ; 253: 112875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430681

RESUMO

Candida albicans (C. albicans), a major opportunistic pathogenic fungus, is known to cause superficial skin infections. Unfortunately, the misuse of antibiotics has led to the emergence of drug resistance in fungi. Antimicrobial photodynamic therapy (aPDT), a non-antibiotic alternative, has shown potential in treating drug-resistant fungal infections. Curcumin is a photodynamically active phytochemical whose photodynamic fungicidal efficacy is largely dependent on its intracellular accumulation. However, curcumin faces challenges in penetrating the cytoplasm due to its poor water solubility and the fungal cell wall. Borneol, another monoterpenoid phytochemical, is known for its ability to enhance drug absorption. In this study, we showed that borneol improved the cellular uptake of curcumin, thereby enhancing its photodynamic fungicidal efficacy against C. albicans. This effect was attributed to borneol's ability to increase cell permeability. Transcriptomic analysis further confirmed that borneol disrupted the normal structure and function of the C. albicans cell wall and membrane, resulting in dysregulated mRNA expression of related genes and ultimately increased cell permeability. As a result, the excessive accumulation of curcumin in C. albicans triggered the overproduction of intracellular ROS upon exposure to blue light. These excessive intracellular ROS disrupted various cellular structures, interfered with essential cellular processes, inhibited biofilm formation and reduced virulence. Remarkably, borneol was also found to enhance curcumin uptake by C. albicans within biofilms, further enhancing the anti-biofilm efficacy of curcumin-mediated aPDT (Cur-aPDT). In conclusion, the results of this study strongly support the potential of borneol as an adjuvant agent to Cur-aPDT in treating superficial cutaneous fungal infections.


Assuntos
Anti-Infecciosos , Canfanos , Curcumina , Micoses , Fotoquimioterapia , Humanos , Candida albicans , Curcumina/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Adjuvantes Imunológicos/farmacologia , Compostos Fitoquímicos , Biofilmes , Fármacos Fotossensibilizantes/farmacologia
15.
ACS Nano ; 18(12): 9160-9175, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478910

RESUMO

The activation of multiple Pattern Recognition Receptors (PRRs) has been demonstrated to trigger inflammatory responses and coordinate the host's adaptive immunity during pathogen infections. The use of PRR agonists as vaccine adjuvants has been reported to synergistically induce specific humoral and cellular immune responses. However, incorporating multiple PRR agonists as adjuvants increases the complexity of vaccine design and manufacturing. In this study, we discovered a polymer that can activate both the Toll-like receptor (TLR) pathway and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. The polymer was then conjugated to protein antigens, creating an antigen delivery system for subunit vaccines. Without additional adjuvants, the antigen-polymer conjugates elicited strong antigen-specific humoral and cellular immune responses. Furthermore, the antigen-polymer conjugates, containing the Receptor Binding Domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein or the Monkeypox Antigen M1R as the antigens, were found to induce potent antigen-specific antibodies, neutralizing antibodies, and cytotoxic T cells. Immunization with M1R-polymer also resulted in effective protection in a lethal challenge model. In conclusion, this vaccine delivery platform offers an effective, safe, and simple strategy for inducing antigen-specific immunity against infectious diseases.


Assuntos
Adjuvantes Imunológicos , Polímeros , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Vacinas de Subunidades , Anticorpos Neutralizantes , Imunidade Inata , Anticorpos Antivirais
16.
J Med Chem ; 67(7): 5373-5390, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507580

RESUMO

There is a need for improved vaccine adjuvants to augment vaccine efficacy. One way to address this is by targeting multiple immune cell pathogen recognition receptors (PRRs) using chimeric pathogen-associated molecular patterns (PAMPs). Conjugation of the PAMPs will ensure codelivery of the immunostimulatory molecules to the same cell, enhancing adjuvant activity. The macrophage inducible C-type lectin (Mincle) is a promising PRR for adjuvant development; however, no effective chimeric Mincle adjuvants have been prepared. We addressed this by synthesizing Mincle adjuvant conjugates, MDP-C18Brar and MDP-C18Brar-dilipid, which contain PAMPs recognized by Mincle and the nucleotide-binding oligomerization domain 2 (NOD2). The two PAMPs are joined by a pH-sensitive oxyamine linker which, upon acidification at lysosomal pH, hydrolyzed to release the NOD2 ligands. The conjugates elicited the production of Th1 and Th17 promoting cytokines in vitro, and when using OVA as a model antigen, exhibited enhanced T-cell-mediated immune responses and reduced toxicity in vivo, compared to the coadministration of the adjuvants.


Assuntos
Adjuvantes de Vacinas , Moléculas com Motivos Associados a Patógenos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Imunidade Celular , Citocinas , Antígenos , Receptores Imunológicos , Lectinas Tipo C
17.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490404

RESUMO

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Assuntos
Glucanos , beta-Glucanas , Humanos , Glucanos/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes de Vacinas , beta-Glucanas/farmacologia , beta-Glucanas/química , Antígenos
18.
Chem Commun (Camb) ; 60(29): 3946-3949, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38497901

RESUMO

We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Receptor 1 Toll-Like , Anticorpos Antivirais , COVID-19/prevenção & controle , Ligantes , Adjuvantes Imunológicos/farmacologia
19.
Fish Shellfish Immunol ; 148: 109502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471627

RESUMO

ß-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of ß-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-ßdefensin which express both the outer membrane protein of the bacterium and ß-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-ßdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-ßdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-ßdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-ßdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that ß-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vacinas de DNA , beta-Defensinas , Animais , beta-Defensinas/genética , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Edwardsiella tarda , Vacinas Bacterianas , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
20.
Fish Shellfish Immunol ; 148: 109507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521142

RESUMO

Immunostimulants represent the most innovative approach for combating shrimp diseases. They are molecules that effectively enhance the host's nonspecific defenses against invading microorganisms. However, methodological differences exist among immunostimulants based on the same source. Therefore, conducting a meta-analysis is essential to derive valid conclusions. The effect size value utilized in this study was Hedges' d. Heterogeneity among studies was assessed using the DerSimonian and Laird tests (Q-statistic). Meta-regression analysis was conducted to explore the sources of heterogeneity in treatment effects. In this study, dose served as a covariate because it was the only continuous variable that significantly contributed to the observed heterogeneity. Funnel plots and the fail-safe number were employed to assess publication bias within the datasets. The article collection process followed the PRISMA methodology. Based on the results of the meta-analysis and meta-regression conducted with 83 articles, it can be concluded that immunostimulants have a significant effect, characterized by high category standard mean difference (SMD) values, on the survival, growth, and immune response of Penaeid family shrimp. Among potential immunostimulants options, algae ingredients exhibited the most favorable effects on the survival, growth, and immune response of Penaeid family shrimp. Subgroup analysis outcomes revealed that various extraction methods significantly impacted the efficacy of immunostimulants, with the ethanol solvent method proving to be the most effective. Among different administration methods, no significant effect was observed on immunostimulant efficacy across all parameters, with positive SMD values for all administration methods. Regarding challenged test pathogens, immunostimulants were observed to enhance immune response, survival, and weight gain against various pathogens. Meta-regression results indicated that algal treatments had a lower optimal dose point, leading to decreased efficacy as the dose increased. In contrast, fungi exhibited a higher optimum dose point, resulting in increased efficacy at higher doses.


Assuntos
Penaeidae , Animais , Adjuvantes Imunológicos/farmacologia , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...